69 research outputs found

    An Implementation of Multimodal Fusion System for Intelligent Digital Human Generation

    Full text link
    With the rapid development of artificial intelligence (AI), digital humans have attracted more and more attention and are expected to achieve a wide range of applications in several industries. Then, most of the existing digital humans still rely on manual modeling by designers, which is a cumbersome process and has a long development cycle. Therefore, facing the rise of digital humans, there is an urgent need for a digital human generation system combined with AI to improve development efficiency. In this paper, an implementation scheme of an intelligent digital human generation system with multimodal fusion is proposed. Specifically, text, speech and image are taken as inputs, and interactive speech is synthesized using large language model (LLM), voiceprint extraction, and text-to-speech conversion techniques. Then the input image is age-transformed and a suitable image is selected as the driving image. Then, the modification and generation of digital human video content is realized by digital human driving, novel view synthesis, and intelligent dressing techniques. Finally, we enhance the user experience through style transfer, super-resolution, and quality evaluation. Experimental results show that the system can effectively realize digital human generation. The related code is released at https://github.com/zyj-2000/CUMT_2D_PhotoSpeaker

    Coating titania nanoparticles with epoxy-containing catechol polymers via Cu(0)-living radical polymerization as intelligent enzyme carriers

    Get PDF
    Immobilization of enzyme could offer the biocatalyst with increased stability and important recoverability, which plays a vital role in the enzyme’s industrial applications. In this study, we present a new strategy to build an intelligent enzyme carrier by coating titania nanoparticles with thermoresponsive epoxy-functionalized polymers. Zero-valent copper-mediated living radical polymerization (Cu(0)-LRP) was utilized herein to copolymerize N-isopropylacrylamide (NIPAM) and glycidyl acrylate (GA) directly from an unprotected dopamine-functionalized initiator to obtain an epoxy-containing polymer with terminal anchor for the “grafting to” or “one-pot” modification of titania nanoparticles. A rhodamine B-labeled laccase has been subsequently used as a model enzyme for successful immobilization to yield an intelligent titania/laccase hybrid bifunctional catalyst. The immobilized laccase has shown excellent thermal stability under ambient or even relatively high temperature above the lower critical solution temperature (LCST) at which temperature the hybrid particles could be facilely recovered for reuse. The enzyme activity could be maintained during the repeated use after recovery and enzymatic degradation of bisphenol A was proven to be efficient. The photocatalytic ability of titania was also investigated by fast degradation of rhodamine B under the excitation of simulated sunlight. Therefore, this study has provided a facile strategy for the immobilization of metal oxide catalysts with enzymes, which constructs a novel bifunctional catalyst that will be promising for the “one-pot” degradation of different organic pollutants

    Exploiting the Vulnerability of Flow Table Overflow in Software-Defined Network: Attack Model, Evaluation, and Defense

    Get PDF
    As the most competitive solution for next-generation network, SDN and its dominant implementation OpenFlow are attracting more and more interests. But besides convenience and flexibility, SDN/OpenFlow also introduces new kinds of limitations and security issues. Of these limitations, the most obvious and maybe the most neglected one is the flow table capacity of SDN/OpenFlow switches. In this paper, we proposed a novel inference attack targeting at SDN/OpenFlow network, which is motivated by the limited flow table capacities of SDN/OpenFlow switches and the following measurable network performance decrease resulting from frequent interactions between data and control plane when the flow table is full. To the best of our knowledge, this is the first proposed inference attack model of this kind for SDN/OpenFlow. We implemented an inference attack framework according to our model and examined its efficiency and accuracy. The evaluation results demonstrate that our framework can infer the network parameters (flow table capacity and usage) with an accuracy of 80% or higher. We also proposed two possible defense strategies for the discovered vulnerability, including routing aggregation algorithm and multilevel flow table architecture. These findings give us a deeper understanding of SDN/OpenFlow limitations and serve as guidelines to future improvements of SDN/OpenFlow

    Improved Density Peak Clustering Algorithm Based on Choosing Strategy Automatically for Cut-off Distance and Cluster Centre

    Get PDF
    Due to the defect of quick search density peak clustering algorithm required an artificial attempt to determine the cut-off distance and circle the clustering centres, density peak clustering algorithm based on choosing strategy automatically for cut-off distance and cluster center (CSA-DP) is proposed. The algorithm introduces the improved idea of determining cut-off distance and clustering centres, according to the approximate distance that maximum density sample point to minimum density sample point and the variation of similarity between the points which may be clustering centres. First, obtaining the sample point density according to the k-nearest neighbour samples and tapping the sample sorting of the distance to the maximum density point; then finding the turning position of density trends and determining the cut-off distance on the basis of the turning position; finally, in view of the density peak clustering algorithm, finding the data points which may be the centres of the cluster, comparing the similarity between them and determining the final clustering centres. The simulation results show that the improved algorithm proposed in this paper can automatically determine the cut-off distance, circle the centres, and make the clustering results become more accurate. In the end, this paper makes an empirical analysis on the stock of 147 bio pharmaceutical listed companies by using the improved algorithm, which provides a reliable basis for the classification and evaluation of listed companies. It has a wide range of applicability

    Inhibition of PPARγ by BZ26, a GW9662 derivate, attenuated obesity-related breast cancer progression by inhibiting the reprogramming of mature adipocytes into to cancer associate adipocyte-like cells

    Get PDF
    Obesity has been associated with the development of 13 different types of cancers, including breast cancer. Evidence has indicated that cancer-associated adipocytes promote the proliferation, invasion, and metastasis of cancer. However, the mechanisms that link CAAs to the progression of obesity-related cancer are still unknown. Here, we found the mature adipocytes in the visceral fat of HFD-fed mice have a CAAs phenotype but the stromal vascular fraction of the visceral fat has not. Importantly, we found the derivate of the potent PPARγ antagonist GW9662, BZ26 inhibited the reprogramming of mature adipocytes in the visceral fat of HFD-fed mice into CAA-like cells and inhibited the proliferation and invasion of obesity-related breast cancer. Further study found that it mediated the browning of visceral, subcutaneous and perirenal fat and attenuated inflammation of adipose tissue and metabolic disorders. For the mechanism, we found that BZ26 bound and inhibited PPARγ by acting as a new modulator. Therefore, BZ26 serves as a novel modulator of PPARγ activity, that is, capable of inhibiting obesity-related breast cancer progression by inhibiting of CAA-like cell formation, suggesting that inhibiting the reprogramming of mature adipocytes into CAAs or CAA-like cells may be a potential therapeutic strategy for obesity-related cancer treatment

    Aurora-A Induces Chemoresistance Through Activation of the AKT/mTOR Pathway in Endometrial Cancer

    Get PDF
    Endometrial cancer (EC) is the most common gynecological tumor all over the world, and advanced/metastatic EC remains a malignancy with poor survival outcome due to highly resistant to conventional chemotherapeutic treatment. Here, we report that Aurora-A, a serine-threonine kinase, plays a vital role in chemoresistance of EC. Aurora-A is overexpressed in EC tissues, compared with normal endometrium and Aurora-A expression is associated with decreased overall survival. Overexpression of Aurora-A in EC cell lines (Ishikawa and HEC-1B cells) promotes cell proliferation and induced paclitaxel- and cisplatin-resistance. Furthermore, Aurora-A activating AKT-mTOR pathway further induces chemoresistance in vitro, consistent with a positive correlation between Aurora-A and phosphorylated AKT/4E-BP1 expression in EC tissues. In summary, our study provides the strong evidence that Aurora-A controls the sensitivity of EC cell lines to chemotherapy via AKT/mTOR pathway, indicating that pharmacologic intervention of Aurora-A and AKT/mTOR in combination with chemotherapy may be considered for the targeted therapy against EC with overexpression of Aurora-A

    Strong Neel ordering and luminescence correlation in a two-dimensional antiferromagnet

    Full text link
    Magneto-optical effect has been widely used in light modulation, optical sensing and information storage. Recently discovered two-dimensional (2D) van der Waals layered magnets are considered as promising platforms for investigating novel magneto-optical phenomena and devices, due to the long-range magnetic ordering down to atomically-thin thickness, rich species and tunable properties. However, majority 2D antiferromagnets suffer from low luminescence efficiency which hinders their magneto-optical investigations and applications. Here, we uncover strong light-magnetic ordering interactions in 2D antiferromagnetic MnPS3 utilizing a newly-emerged near-infrared photoluminescence (PL) mode far below its intrinsic bandgap. This ingap PL mode shows strong correlation with the Neel ordering and persists down to monolayer thickness. Combining the DFT, STEM and XPS, we illustrate the origin of the PL mode and its correlation with Neel ordering, which can be attributed to the oxygen ion-mediated states. Moreover, the PL strength can be further tuned and enhanced using ultraviolet-ozone treatment. Our studies offer an effective approach to investigate light-magnetic ordering interactions in 2D antiferromagnetic semiconductors

    Hypermethylation of miR-338-3p and Impact of its Suppression on Cell Metastasis Through N-Cadherin Accumulation at the Cell -Cell Junction and Degradation of MMP in Gastric Cancer

    Get PDF
    Background/Aims: MicroRNAs (miRNAs) have been well studied in human carcinogenesis and cancer progression. Our previous study showed the down-regulation of miR-338-3p expression in human gastric cancer (GC). However, the reasons of this dysregulation remain largely unclear. Methods: Bisulfite sequence analysis was performed to explore the methylation status of the promoter region of miR-338-3p. Cell wound-healing and transwell assays were performed to examine the capacity of cell migration and cell interaction. A dual-luciferase reporter was used to validate the bioinformatics-predicted target gene of miR-338-3p. Western blotting, RNA interference, and immunofluorescence (IF) were used to evaluate the expression of MMPs and the location of N-cadherin to determine the mechanism underlying miR-338-3p-induced anti-tumor effects. Results: miR-338-3p was epigenetically silenced, and this loss of expression was significantly correlated with the Borrmann Stage in GC. Restoring miR-338-3p expression in BGC-823 cells inhibited cell migration and invasion. Moreover, Ras-related protein (Rab-14) and Hedgehog acyltransferase (Hhat) were identified as direct targets of miR-338-3p. Both enforced expression of miR-338-3p and small interfering RNA induced Rab14-mediated accumulation of N-cadherin in the cell -cell junctions or Hhat-associated matrix metalloproteinase (MMP) degradation, which may underline the metastasis defects caused by loss of miR-338-3p in GC. Conclusion: These data indicate that miR-338-3p functions as a tumor suppressor in GC, and that the hypermethylation status of its CpG island might be a novel potential strategy for treating GC
    corecore